Precise Excision of the CAG Tract from the Huntingtin Gene by Cas9 Nickases
نویسندگان
چکیده
Huntington's disease (HD) is a progressive autosomal dominant neurodegenerative disorder caused by the expansion of CAG repeats in the first exon of the huntingtin gene (HTT). The accumulation of polyglutamine-rich huntingtin proteins affects various cellular functions and causes selective degeneration of neurons in the striatum. Therapeutic strategies used to date to silence the expression of mutant HTT include antisense oligonucleotides, RNA interference-based approaches and, recently, genome editing with the CRISPR/Cas9 system. Here, we demonstrate that the CAG repeat tract can be precisely excised from the HTT gene with the use of the paired Cas9 nickase strategy. As a model, we used HD patient-derived fibroblasts with varied numbers of CAG repeats. The repeat excision inactivated the HTT gene and abrogated huntingtin synthesis in a CAG repeat length-independent manner. Because Cas9 nickases are known to be safe and specific, our approach provides an attractive treatment tool for HD that can be extended to other polyQ disorders.
منابع مشابه
CRISPR/Cas9-Induced (CTG⋅CAG)n Repeat Instability in the Myotonic Dystrophy Type 1 Locus: Implications for Therapeutic Genome Editing
Myotonic dystrophy type 1 (DM1) is caused by (CTG⋅CAG)n-repeat expansion within the DMPK gene and thought to be mediated by a toxic RNA gain of function. Current attempts to develop therapy for this disease mainly aim at destroying or blocking abnormal properties of mutant DMPK (CUG)n RNA. Here, we explored a DNA-directed strategy and demonstrate that single clustered regularly interspaced shor...
متن کاملCRISPR-Cas9 Mediated Gene-Silencing of the Mutant Huntingtin Gene in an In Vitro Model of Huntington’s Disease
Huntington's disease (HD) is a fatal neurodegenerative genetic disease characterized by a loss of neurons in the striatum. It is caused by a mutation in the Huntingtin gene (HTT) that codes for the protein huntingtin (HTT). The mutant Huntingtin gene (mHTT) contains extra poly-glutamine (CAG) repeats from which the translated mutant huntingtin proteins (mHTT) undergo inappropriate post-translat...
متن کاملApplications of Cas9 nickases for genome engineering (CRS-10084-AN)
Two amino acid mutations (D10A and H840A) in S. pyogenes Cas9 catalytic domains can be independently introduced into wild-type (WT) Cas9 protein to produce proteins capable of inducing single-stranded nicks rather than double-stranded breaks (DSBs). To create DSBs with Cas9 nickases, specific binding of two guide RNAs (gRNAs), located on opposite strands and in close proximity, is required. In ...
متن کاملAssessment of Correlation between Androgen Receptor CAG Repeat Length and Infertility in Infertile Men Living in Khuzestan, Iran
Background The androgen receptor (AR) gene contains a polymorphic trinucleotide repeat that encodes a polyglutamine tract in its N-terminal transactivation domain (NTAD). We aimed to find a correlation between the length of this polymorphic tract and azoospermia or oligozoospermia in infertile men living in Khuzestan, Iran. MaterialsAndMethods In this case-control study during two years till 20...
متن کاملO-42: Expansion of CAG Repeats in theSpinocerebellar Ataxia Type 1 (SCA1) Gene inIdiopathic Oligozoospermia Patients
Background: The lengths of CAG repeats in two spinocerebellar ataxia genes, SCA1 and SCA3, were analyzed to determine whether such repeats exist in higher numbers in infertile males. Materials and Methods: Blood samples were collected from healthy controls, oligozoospermia patients, and azoospermia patients. DNA fragments containing target CAG repeats were amplified by PCR with template DNA pur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2018